Proving the Trigonometric Identity: √(1 - sinx) cos(x/2) - sin(x/2)
Proving the Trigonometric Identity: √(1 - sinx) cos(x/2) - sin(x/2)
Introduction:
In trigonometry, the relationship between trigonometric functions is often expressed through various identities. One such identity involves the half-angle functions and helps us to simplify expressions involving sine and cosine. This article will demonstrate the proof that:
Step-by-Step Proof
Step 1: Use Half-Angle Identities
The half-angle identities are as follows:
[cosleft(frac{x}{2}right) sqrt{frac{1 cos x}{2}}]
[sinleft(frac{x}{2}right) sqrt{frac{1-cos x}{2}}]
Step 2: Express 1 - sinx
We can express (sin x) using the double-angle identity:
[sin x 2 sinleft(frac{x}{2}right) cosleft(frac{x}{2}right)]
Thus, we have:
[1 - sin x 1 - 2 sinleft(frac{x}{2}right) cosleft(frac{x}{2}right)]
Step 3: Rewrite in terms of half-angle functions
Using the Pythagorean identity, we know:
[cos^2left(frac{x}{2}right) - sin^2left(frac{x}{2}right) 1]
Therefore, we can express (1 - sin x) as:
[1 - sin x left[cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right)right]^2]
Step 4: Square the right-hand side
Now, let's square (cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right)):
[left[cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right)right]^2 cos^2left(frac{x}{2}right) - 2 cosleft(frac{x}{2}right) sinleft(frac{x}{2}right) sin^2left(frac{x}{2}right)]
Using the Pythagorean identity again, we get:
[cos^2left(frac{x}{2}right) sin^2left(frac{x}{2}right) 1]
So we can rewrite the expression as:
[left[cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right)right]^2 1 - 2 cosleft(frac{x}{2}right) sinleft(frac{x}{2}right))
But we know from Step 2 that:
[1 - 2 cosleft(frac{x}{2}right) sinleft(frac{x}{2}right) 1 - sin x)
Hence:
[left[cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right)right]^2 1 - sin x)
Step 5: Relate to √(1 - sinx)
Therefore:
[sqrt{1 - sin x} left[cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right)right])
Final Consideration:
The equality holds in the appropriate domain of (x) where both sides are non-negative. Thus, we can conclude:
[sqrt{1 - sin x} cosleft(frac{x}{2}right) - sinleft(frac{x}{2}right))
Conclusion:
This identity is useful in various mathematical and engineering problems, particularly in simplifying trigonometric expressions. The intervals must be considered to ensure the identity holds true.